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Israel

Received 4 November 1996, in final form 18 March 1997

Abstract. The autocorrelation function of spectral determinants is proposed as a convenient
tool for the characterization of spectral statistics in general, and for the study of the intimate
link between quantum chaos and the random matrix theory, in particular. For this purpose, the
correlation functions of spectral determinants are evaluated for various random matrix ensembles,
and are compared with the corresponding semiclassical expressions. The method is demonstrated
by applying it to the spectra of the quantized Sinai billiards in two and three dimensions.

1. Introduction

One of the most important discoveries in the study of quantum systems which display
chaotic dynamics in the classical limit, was the fact that generically, the spectral statistics
obey the predictions of random matrix theory (RMT). This observation was originally made
on the basis of numerical experiments (see for example [1] for energy spectra, [2] forS-
matrix spectra), but during recent years it received a much stronger theoretical foundation
[3–7]. The standard tools for the quantitative study of spectral statistics were then-point
correlation functions, or some functions thereof which were usually chosen because of their
suitability in the analysis of finite spectral stretches. In the present work we would like
to propose a different approach, which is based on the study of the statistical properties
of the spectral determinant, sometimes referred to as thesecular function, the spectralζ
function or the characteristic polynomial: it is the function which vanishes if and only if
its argument belongs to the spectrum. The spectral determinant, considered as a function
of its variable, is defined in terms of coefficients which can be expressed as functions of
the eigenvalues. This is particularly simple for the case of a matrix of finite dimensionN ,
where the characteristic polynomial is defined in terms of its coefficients, which, in turn,
can be calculated from the spectrum. Thus, the information stored in the spectral function is
equivalent to the information stored in the spectrum, and one may ask why should one study
the statistics of the former, when then-point spectral statistics are so well investigated.

In this paper we shall try to show that in fact the correlation function may offer some
important advantages for studying the statistics of the spectrum. To name a few: in general
the coefficients in the spectral determinants depend in a complicated way on the spectral
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points. Sometimes, however, the ensemble averages of these quantities have particularly
simple expressions, which are convenient for numerical and theoretical studies. This was
the reason why the Essen group [8] studied the statistical properties of the coefficients of the
characteristic polynomials for the random circular ensembles. We would like to emphasize
other aspects, which are especially important for establishing the connection between
quantum chaos and RMT. The Gutzwiller trace formula, which gives the semiclassical
theory for the spectral density, typically diverges. The derivation of spectral statistics
based on this theory, should therefore be augmented by additional assumptions [3] orad
hoc truncation procedures [7]. In contrast, the semiclassical expression for the spectral
determinant involves a finite number of periodic orbits, and therefore it converges on
the real energy axis. The semiclassical spectral determinant preserves another important
property, namely, it is explicitly real for real energies [9–11]. Thus, the semiclassical study
of the statistical properties of the spectral determinant can be based on a relatively solid
starting point. Last but not least, the semiclassical spectral determinant shares many of its
properties with the Riemann Siegel expression for the Riemannζ function on the critical
line. The autocorrelation function forζR is the subject of a study by Keatinget al [12] which
was carried out in parallel to the present work. The rigorous results obtained for theζR
case, provide some support to the physically reasonable (yet mathematically uncontrolled)
approximations made in the semiclassical theory to be discussed here.

The object we would like to study in the present paper is the autocorrelation function.
Denote byZ(x) the secular function, which vanishes at the spectral points{xn}. The variable
x can stand for the energy, or for the phase variable when the operator under study is a
unitary operator such as aS-matrix or a unitary evolution operator. Consider a domain of
size1 centred aboutx0. The autocorrelation function is defined in terms of

C̄(ξ ; x0) = 1

1

∫ x0+1/2

x0−1/2
Z(x + ξ/2)Z∗(x − ξ/2) dx. (1)

The mean, normalized autocorrelation function is

C(ξ) = 〈C̄(ξ ; x0)〉
〈C̄(0; x0)〉

. (2)

The brackets stand for averaging over an appropriate random matrix ensemble, or for a
spectral average which is affected by averaging overx0. It is assumed throughout that
the correlation variableξ takes values which are always much smaller than the integration
interval1.

For a given system, the secular function is uniquely defined up to a multiplicative factor
which does not have zeros or poles on the real energy axis. This freedom does not affect
the most relevant features of the correlation function which appear on the scale of the mean
level spacing.

The behaviour ofC(ξ) can be intuitively clarified, by considering two extreme cases: an
equally spaced (infinitely rigid) spectrum produces a correlation function which is a strictly
periodic function ofξ ,

C(ξ) = cosπξ (3)

whereξ is measured in units of the level spacing. On the other hand, a Poissonian spectrum
with N spectral points, yields a positive correlation which decays to zero on a scale which is
proportional to

√
N . This can be shown by considering the ensemble of diagonal matrices

with independent, Gaussian random diagonal elements with〈H 2
ii〉 = N2

2π . With this choice,



Characterization of quantum chaos by the autocorrelation function3645

the average level spacing atE = 0 is 1. The correlation function is

CN(ξ) =
(

1− ξ2

2πN2

)N
→ exp

(
− ξ2

2πN

)
. (4)

Thus, the lack of correlation between the energy levels induces a slowly decaying
correlation function.

The canonical random ensembles all display level repulsion which induce strong
correlations. It is expected, therefore, that the ‘incipient crystalline character’ [13] of the
spectrum of these canonical random matrix ensembles will manifest itself by oscillatory, yet
slowly decaying, correlation functions. The more rigid the spectrum (largerβ), the more
marked and persistent the oscillations ofC(ξ) will be.

The paper is organized as follows. Section 2 is devoted to the derivation of the
autocorrelation function for the standard random matrix ensembles. In section 3, we shall
discuss the semiclassical derivation, and compare it with the prediction of RMT. Finally in
section 4, we shall present some numerical results which were performed to illustrate and
supplement the theoretical derivations.

2. Random matrix theory for the autocorrelation functions

The autocorrelation function takes a particularly simple form in the case of the circular
random ensembles. Moreover, the recent results of the Essen group [8] can be directly used
to obtain closed expressions for the autocorrelation function. For the sake of completeness,
we shall briefly summarize the results for the circular ensembles in the first part of this
section. The Gaussian ensembles require some more work: correlation functions of the kind
we are interested in were only derived for the unitary (GUE) ensemble [14]. Moreover, the
semicircular mean spectral density for the Gaussian ensembles might introduce irrelevant
features in the correlation functions if they are not properly treated. The derivation of the
autocorrelation function for any Gaussian ensemble which interpolates between the GOE
and the GUE will be given in section 4.2 and in the appendix. The effects which are due to
the non-uniform mean spectral density are also discussed and are found to be less significant
as the dimension of the random matrices increases.

2.1. The circular ensembles

The spectrum of aN × N unitary matrix S consists ofN unimodular eigenvalues
eiθl , 1 6 l 6 N . It is convenient to write the characteristic polynomial such that it is
real on the unit circle

ZS(ω) = e
i
2 (Nω−2) det(I − e−iωS) (5)

where ei2 = det(−S). The characteristic polynom can be written as

ZS(ω) = e
i
2 (Nω−2)

N∑
l=0

ale
−iωl. (6)

The autocorrelation function now reads

C̄(ξ) = 1

2π

∫ 2π

0
ZS(ω + ξ/2)ZS(ω − ξ/2) dω (7)

or explicitly,

Cβ(ξ) =
∑N

l=0〈|al|2〉βeiξ(l− N
2 )∑N

n=0〈|an|2〉β
(8)
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where 〈·〉β stands for the average with respect to the spectral measure of the orthogonal
(β = 1), unitary (β = 2) or symplectic(β = 4) circular ensembles. The unitarity imposes
the identity |an| = |aN−n| which guarantees that the autocorrelation function is real, and
reduces the effort needed to calculate the ensemble averages.

The ensemble averages〈|an|2〉β were calculated in [8] for all values ofβ. We shall
quote here the results for the orthogonal and the unitary ensembles:

〈|an|2〉β=1 = 1+ n(N − n)
N + 1

〈|an|2〉β=2 = 1 for n = 0 . . . N. (9)

It is convenient to introduce the scaled correlation lengthω = ξ 2π
N

and in the limit of large
N the sums in (8) can be approximated as integrals, to give

Cβ=1(ω) = 3

2

(
sinπω

πω
+ 1

π2

∂2

∂ω2

sinπω

πω

)
Cβ=2(ω) = sinπω

πω
. (10)

Equation (10) suggests the following relations between the real correlation functions:

Cβ=1(ω) = −3
1

π2ω

∂

∂ω
Cβ=2(ω). (11)

The two correlation functions are displayed in figure 2. As expected, the more rigid
ensemble (β = 2) shows stronger correlations than the less rigid ensemble.

The expressions derived above for the circular ensembles also appear when the Gaussian
ensembles are discussed in the largeN limit. A detailed derivation will follow in the next
section.

2.2. The Gaussian ensembles

Unlike the circular ensembles, the mean spectral densities for the Gaussian ensembles are
not uniform. This has to be incorporated in the definition of the correlation function for the
Gaussian ensembles. Otherwise this spurious behaviour may blur the essential correlations.
Because of this consideration we shall compute the functions

C̄N(E, ω) =
〈
det

(
E + ω

2
−H

)
det

(
E − ω

2
−H

)〉
H
. (12)

This function should then be normalized by its value atω = 0, to obtain the function
C(ω), as defined in equation (2). If we find a dependence of this function onE, even
for largeN , we will have to perform an integration over a restricted region of the centre
E : |E| 6 √N . 〈·〉H indicates an average over the ensembles of Hermitian matrices with
respect to the measures which will be defined below.

Before doing any calulations, one can gain some insight into this function by writing
CN as

C̄N(E, ω) =
〈 N∏
i=1

(
E − ω

2
− Ei

) (
E + ω

2
− Ei

) 〉
H

=
〈

exp

( N∑
i=1

(
ln
(
E − ω

2
− Ei

)
+ ln

(
E + ω

2
− Ei

)) 〉
H

. (13)

Hence,CN can be considered as the partition function of a gas of particles at positionsEi ,
moving in a quadratic potential (which is provided by the Gaussian measures) and interacting
via a logarithmically repulsive interaction with two particles whose positions are fixed at
E + ω/2 andE − ω/2 and which do not interact with each other. The interaction between
the particles at positionsEi themselves depends on the distribution and the symmetry of the
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random HamiltonianH as we will see in more detail below. It may be useful to come back
to this Coulomb gas picture ofCN to understand the results whose derivation we present in
the following.

For analytical calculations within an ensemble of random matrices, it is more convenient
to write each determinant as the functional integral over two sets ofN Grassmann variables,
which greatly simplifies the averaging over the weight of the ensemble:

C̄N(E, ω) =
∫

dξ dξ∗ dη dη∗ 〈e−ξ+(E+ ω
2−H)ξe−η

+(E− ω
2−H)η〉H (14)

whereξT = (ξ1, . . . , ξN), ηT = (η1, . . . , ηN), ξ+ = (ξ ∗1 , . . . , ξ∗N), η+ = (η∗1, . . . , η∗N), and
with ∫

dξ dξ ∗ e−ξ
∗Aξ = detA (15)∫

dξ dξ∗ ξ ∗i ξje
−ξ∗Aξ = (A−1)ij detA. (16)

In this way, the averaging over the Gaussian distributed random matricesH is reduced to
a simple Gaussian integral. The remaining Grassmann integrals can be computed to give
CN(E,ω) as an(N/2)th-order polynomial inω2. Even though we succeeded to do this
for arbitraryN , the resulting expressions are rather cumbersome, and since in any case the
limit N →∞ is of prime interest, we prefer to perform the integrations in the saddle-point
approximation which coincides with the exact result forN →∞.

We shall treat the unitary and the orthogonal Gaussian random ensembles (and any
interpolating ensemble) in a unified way. This is done by writing the Hamiltonian as [15]

H = Hs + iαHa (17)

whereHs is a symmetric real matrix, its matrix elementsHsij = Hsji are real numbers
∀i, j = 1, . . . , N . The matrix elements ofHa are asymmetric,Haij = −Haji and real
numbers∀i 6= j = 1, . . . , N , since the HamiltonianH has to be Hermitian.

The random matrices are distributed with a Gaussian measure,

exp(−cTr(H 2))dH = exp

(
− c

N∑
i=1

H 2
si − 2c

∑
i>j

H 2
sij − 2cα2

∑
i>j

H 2
aij

)
dH (18)

wherec = π2/(4N) corresponds to a spectrum with mean level spacing set equal tod = 1.
Note that, α = 0 corresponds to GOE where there is time reversal symmetry,

the HamiltonianH is symmetric and the distribution is invariant under orthogonal
transformationsH → OHO−1. α = 1 describes the pure GUE where the time reversal
symmetry is broken completely and the Hamiltonian is Hermitian and invariant under unitary
transformationsH → UHU−1.

Calculating the correlation function forα between 0 and 1, we obtain the crossover
between GOE and GUE.

After performing the Gaussian average over the random matrices (14) reads

C̄N(E, ω) =
∫

dξ dξ∗ dη dη∗ exp

(
i
N∑
i=1

ξ+i
(
E + ω

2

)
ξi + i

N∑
i=1

η+i
(
E − ω

2

)
ηi

)

× exp

(
− 1

4c

N∑
i=1

(ξ ∗i ξi + η∗i ηi)2
)

× exp

(
− 1

8c

∑
i>j

(ξ ∗i ξj + ξ ∗j ξi + η∗i ηj + η∗j ηi)2
)



3648 S Kettemann et al

× exp

(
α2 1

8c

∑
i>j

(ξ ∗i ξj − ξ ∗j ξi + η∗i ηj − η∗j ηi)2
)
. (19)

Thus, we obtain an interacting field theory with interaction strength 1/(4c). The
Grassmannian functional integration (in theN → ∞ limit) is described in some detail
in the appendix. The resulting normalized correlation function reads

CN(E,ω) = CN(ω) =
∫ 1

0
dλ λ

sin(πωλ)

ω
exp(t2(λ2− 1))/C0(t

2) (20)

where the normalization constant is given by

C0(t
2) = 2

π

∫ 1

0
dλ λ2 exp(t2(λ2− 1)) (21)

and t2 = 4Nα2.
The integrals can be evaluated analytically for arbitraryα, giving

CN(ω) =
π3/2 1

t
exp

(
π2ω2

4t2

)
= [erfc

(
πω
2t + it

)]− 2et
2 sin(πω)

ω

π3/2 1
t
=[erfc(it)] − 2et2π

(22)

where erfc(z) is the complementary error function.
For further use we study the pure GUE and GOE cases explicitly. The simplest case

is for the GUE ensemble (α = 1). For largeN , the exponential factor in integrand (20) is
finite only for λ = 1, and we obtain:

CN(ω) = sin(πω)/(πω). (23)

For the GOE ensemble (α = 0), we find:

CN(ω) = 3

π

∫ 1

0
dλ λ

sin(πωλ)

ω
= − 6

π2ω
∂ω

sin(πω)

πω
. (24)

It is interesting to note that this coincides also with

3

2

∫ 1

−1
dλ (1− λ2) exp(iωλ) (25)

which coincides with Efetov’s result for the pure GOE ensemble.

3. Semiclassical theory

The semiclassical quantization scheme, which is to be used in the following, is the scattering
approach [10], (see also [9]) in which one defines a semiclassicalunitary S(E) operator of
dimension3 and the secular equation, defined to be real for real energies, can be written
as

Z(E) = e−i2(E)/2 det(I − S(E)) (26)

where2(E) is the total phase shift:

ei2(E) = det(−S(E)). (27)

It is assumed that the classical analogue ofS is an area preserving mapM acting on a
Poincaŕe section with a phase space areaA. In the semiclassical limit,3 is the integer
part ofA/2πh̄. In the same limit, the total phase is related to the smooth spectral counting
function

2(E) ≈ 2πN̄(E). (28)
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The secular equation is real by construction. It can also be expressed in terms of the
eigenphasesθl(E) of S(E), or as the characteristic polynomial ofS(E) evaluated atz = 1:

Z(E) = e−i2(E)/2

[ 3∏
l=1

(1− zeiθl (E))

]
z=1

= e−i2(E)/2

[ 3∑
l=0

al(E)z
l

]
z=1

. (29)

The unitarity ofS(E) leads to the relations

e−i2/2al = ei2/2a∗3−l (30)

which can be used to rewrite (29) as

Z(E) = e−i2(E)/2
[3/2]∑
l=0

al(E)+ CC. (31)

To calculate the correlation function, we remember that theal are the fully symmetric,
homogeneous polynomials in the eiθm of the order ofl. We can approximate their variation
with energy by writing

al(E + ε/2) ≈ al(E)eilτ ε/2 (32)

whereτ is the average value of the partial delay timesτl = ∂θl (E)

∂E
. The distribution of the

τl is known to be narrowly centred about the mean value,τ [10]. It follows from (28) that

τ = 2πd̄/3. (33)

The autocorrelation function now reads

C̄(ε) = 1

1E

∫ E0+1E/2

E0−1E/2
dE〈Z(E + ε/2)Z(E − ε/2)〉

≈
3∑
l=0

|〈|al|2〉1Eeiτε(3/2−l). (34)

Where we made use of the fact that the interval1E is large on the quantum scale so
that the phasesθl(E) make many revolutions whenE traverses the interval1E. We may
now denote the scaled energy byω = εd̄, and use the relationτε = 2π

3
εd̄ = 2π

3
ω. The

last equation shows that the autocorrelation functionC̄(ε) can be also interpreted as the
autocorrelation of the secular equation of the ensemble ofS(E) matrices averaged over the
energy interval1E. Hence, when comparing the results of the semiclassical theory with
the predictions of RMT, we shall use the RMT expression for thecircular ensembles (8),
even though our starting point was the spectral determinants of the Hamiltonian.

To introduce the semiclassical theory for the autocorrelation function, it is useful to
recall some exact relations which enable us to express the coefficientsal in terms of trSn.
This is done by iterating the Newton identities

al = −1

l

(
trSl +

l−1∑
k=1

aktrS
l−k
)
. (35)

An explicit solution of the Newton identities is given by thePlemelj–Smithies formula[21]

al = (−1)l

l!

∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 s2 s3 · · · sl
1 s1 s2 · · · sl−1

0 2 s1 s2 · · sl−2

0 0 3 s1 · · sl−3

· · · · · · ·
· · · · · · ·
0 · · · 0 l − 1 s1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(36)
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where we use the notation

sl = trSl. (37)

Result (36) can be easily proved by expanding the determinant with respect to the last
column. Writing down the explicit expression of the determinant, one obtains

al = −1

l

(
sl +

∑
l

(−1)n∏n
i=1 li

sl−l1sl1−l2 . . . sln−1−ln sln

)
(38)

where the summation is over all vectorsl with integer entries such thatl > l1 > l2 > · · · >
ln > 1. The last equation can also be directly derived from (35) by successive iterations.

The semiclassical approximation is introduced at this point: theS operator is considered
as the quantum analogue of the classical evolution operator of the relevant Poincaré map
M. Hence trSn is expressed semiclassically in terms of periodic orbits which traverse the
Poincaŕe sectionn times.

sn = trSn ≈
∑
p

gpnpeir(Sp/h̄−νp π2 )

| det(I −Mr
p)|

1
2

. (39)

The summation is extended over all primitive periodic orbitsp of the Poincaŕe map, with
periodsnp which are divisors ofn, so thatn = npr. gp stands for the number of distinct
symmetry conjugate orbits,Mp is the monodromy matrix,Sp andνp are the action and the
Maslov index, respectively.

To obtain the semiclassical expression for the coefficients of the autocorrelation function,
we have to substitute the semiclassical expression (39) into (38). When this is done, one
obtains the standardcomposite orbitsexpansion of the spectral determinant [10, 11]. Taking
the absolute square and averaging over the energy interval, we make use of the diagonal
approximation,

〈sns∗m〉1E ≈ δnm
∑
p

g2
pn

2
p

| det(I −Mr
p)|
≈ δnm

∑
p

g2n2

| det(I −Mp)| (40)

which is valid because of the rapid oscillating phases in (39). The right expression in
(40) uses the observation that for largen the primitive orbits dominate the periodic orbit
sum. Under these conditions, it is allowed to replacegp by its mean valueg. The argument
which was used to justify the diagonal approximation for〈sns∗m〉1E can be used for taking the
average of the product of any number ofsn factors. Due to the assumed lack of correlations
between the phase factors, one finds that the diagonal approximation implies that thesn
form an ensemble of independent random Gaussian variables. This observation is valid as
long as repetitions of primitive periodic orbits can be neglected which is a standard element
in the semiclassical theory of spectral fluctuations [22]. We shall denote the variances of
the sn distributions by

〈|sn|2〉 = 〈|sn|2〉1E =
∑
p

g2n2

| det(I −Mp)| . (41)

The first step in implementing the diagonal approximation for〈|al|2〉1E is to isolate
terms which, upon averaging, do not yield vanishing contributions because of unmatched
phase factors. Thus,

〈|al|2〉1E = 1

l2

[
〈sls∗l 〉1E +

〈∑
l1

∑
m1

sl−l1sl1s
∗
l−m1

s∗m1

l1m1

〉
>1E

+
〈∑
l1,l2

∑
m1,m2

sl−l1sl1−l2sl2s
∗
l−m1

s∗m1−m2
s∗m2

l1l2m1m2

〉
1E

+ · · ·
]

(42)
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where the summations in thenth term are restricted to the domainsl > l1 > l2 > · · · > ln >
1 andl > m1 > m2 > · · · > mn > 1. The diagonal approximation which is synonymous to
treating thesn as random Gaussian variables enables us to derive the following expression
for 〈|al|2〉1E

〈|al|2〉1E ≈ 1

l

[ 〈|sl|2〉
l
+

l−1∑
n=1

∑
l1···ln

1∏
j lj

〈|sl−l1|2〉
l − l1

〈|sl1−l2|2〉
l1− l2 · · ·

〈|sln |2〉
ln

]
(43)

where the summation is carried with the restrictionl > l1 > · · · ln > 1.
At this point it is instructive to consider the Fredholm determinant for theclassical

evolution (Frobenius Peron) operator

U(x, x′) = δ(x′ −M(x)) (44)

wherex is a point on the classical Poincaré section. A straight forward integration gives

ul = trUl =
∑
pl

lpgp

| det(I −Mr
p)|
≈
∑
p

lg

| det(I −Mp)| =
1

gl
〈|sl|2〉. (45)

The uniform coverage of phase space by the chaotic trajectories implies thatul ≈ 1 for
sufficiently largel. In other words,

〈|sl|2〉 ≈ gl for l > 1 (46)

which is the well known Hannay and Ozorio de Almeida sum rule [22]. Using this estimate
for all 〈|sl|2〉 in (43) we find

〈|al|2〉1E ≈ g

l

(
1+

l−1∑
n=1

gn
∑

l>l1···ln>1

1∏
j lj

)
= g

l

(
1+

l−1∑
n=1

gnIn(l)

)
(47)

where

In(l) =
l−1∑
l1=n

1

l1

l1∑
l2=n−1

1

l2
· · ·

ln−2∑
ln−1=2

1

ln−1

ln−1∑
ln=1

1

ln
. (48)

The lower and upper summation indices follow from the restrictionl > l1 > · · · ln > 1. We
now observe that the functionsIn(l) satisfy the recursion relations

In(l) = −1

l
In−1(l)+

l∑
r=n

1

r
In−1(r) (49)

which is equivalent to

In(l)− In(l − 1) = 1

l − 1
In−1(l − 1) (50)

and it is subject to the conditionIl(l) = Il(l − 1) = 0. Denote

fl(g) = 1+
l−1∑
n=1

gnIn(l). (51)

Multiplying (50) by gn and summing overn one obtains

fl(g) = l − 1+ g
l − 1

fl−1(g) with f1(g) = 1. (52)

Hence, for any integerg

fl(g) = (l − 1+ g)!
(l − 1)!g!

=
(
l − 1+ g

g

)
. (53)
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For the cases of interest here,fl(g = 1) = l andfl(g = 2) = l(l+1)/2. These expressions
can be substituted into (47) to give

〈|al|2〉1E(g) = g

l
fl(g) =

{
1 for g = 1

1+ l for g = 2.
(54)

This is the central result of the present section. It should be augmented by the identity

〈|al|2〉1E = 〈|a3−l|2〉1E (55)

which is due to unitarity, and then compared with the results of RMT (9).
Systemswithout time reversal symmetry (TRS) haveg = 1, so that the semiclassical

result (54) coincides with the prediction of RMT for the CUE.
In chaotic systemswith TRS,g = 2 and

〈|al|2〉1E ≈
{

1+ l for 1< l 6 3/2
1+3− l for 3 > l > 3/2.

(56)

This expression does not reproduce the RMT result for the COE case [8]

〈|al|2〉COE= 1+ l 3

3+ 1
− l2 1

3+ 1
. (57)

However, for large3, where the semiclassical approximation is justified, the semiclassical
result reproduces the exact expression in a domain ofl values of size

√
3 in the vicinity

of the endpoints of thel interval, l = 0 and l = 3. The deterioration of the quality of
the agreement between the semiclassical and the RMT expressions when TRS is imposed
is typical, and it is an enigma in the field of quantum chaos. This is a typical behaviour of
the semiclassical approximation, first discussed by Berry [3].

We shall now use the results of the previous sections to investigate the connection
between the spectral autocorrelation function and the Ruelleζ function for the classical
mappingM. The Ruelleζ is constructed from the Fredholm determinant of the classical
evolution (Frobenius Peron) operator by

ζ(s) = (det(I − e−sU))−1 =
∞∑
l=0

Acl
l e−sl . (58)

Using the same methods as above, one can easily derive the explicit expression for the
coefficients,

Acl
l =

1

l

(
ul +

∑
l

1∏n
i=1 li

ul−l1ul1−l2 . . . uln−1−lnuln

)
(59)

and compare it with the coefficients of the semiclassical correlation function (43) in which
the relationsl ≈ glul is used,

〈|al|2〉1E ≈ g

l

(
ul +

∑
l

gn
1∏n
j=1 lj

ul−l1ul1−l2 . . . uln−ln−1uln

)
. (60)

For systems without TRSg = 1, and one obtains

〈|al|2〉1E ≈ Acl
l . (61)

This close relationship between thequantum autocorrelation function and theclassical
Ruelleζ function is another manifestation of the observation of [5–7] on the role played by
the Ruelleζ function in the semiclassical theory of spectral correlations. However, one has
to be careful and modify this statement by noting that only afinite number of coefficients
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are used in the spectral autocorrelation function. As a matter of fact, only the first3/2 are
used. Those with3/26 l 6 3 must be defined by (55) due to unitarity, and the rest are set
to zero. This is where the (topological) Heisenberg time enters the semiclassical theory. It
should be emphasized that the truncation and the symmetry are essential elements, without
which the semiclassical theory yields wrong results. Therefore, the identification ofC(w)

asζ(iπw) is not allowed.
Systems with TRS haveg = 2. In this case one can identify the coefficients〈|al|2〉1E

with the coefficients of the function

ζg(s) = (det(I − ge−sU))−1 =
∞∑
l=0

Acl
l (g)e

−sl . (62)

For larges one can use the approximate relationζg(s) ≈ (ζ(s))g. The fact that(ζ(s))2 is
the classical function which appears in the semiclassical approximation for spectral statistics
in systems with TRS was previously discussed in [7]. The remarks made above concerning
the relation between the autocorrelation functionC(ω) and the classical functionζg(s) also
hold in the present case.

The explicit results obtained above are valid under the condition that the classical orbits
uniformly cover phase space, and uniformity is achieved within a short time. Only for such
systemsun ≈ 1. There are, however, other chaotic systems for which the coverage of phase
space is diffusive. Then,un can be identified with theclassical return probability, which
for diffusion in d dimensions is proportional ton−d/2. One can also work out the spectral
autocorrelation function for these systems. This subject will be pursued elsewhere.

4. Numerical results and illustrations

In the previous sections we discussed the average autocorrelation functions of spectral
determinants for various random matrix ensembles, and the corresponding semiclassical
expressions. Before being able to compare the RMT results with spectral data of quantum
chaotic systems, we had to clarify a few practical points. The results for the Gaussian
ensembles are obtained in the large-N limit, while all the numerical work can be carried
out on spectral intervals offinite length. Since the differences between the correlation
functions for the different ensembles are not too large, it was important to develop tools to
check to what extent the finite-N calculations approach theN → ∞ limit. For the GOE
case, the analytic theory becomes rather cumbersome. The analytic results of [8] for the
circular ensembles cannot be used directly for this purpose, because the circular and the
Gaussian ensembles are expected to coincide only in theN → ∞ limit. To check this
point, we developed an efficient sampling method based on the metropolis algorithm [18],
with which we could calculate the expectation values of any property for any of the matrix
ensembles both accurately and efficiently. This was an important tool in our work and we
shall describe it in section 4.1.

Spectral determinants of unbounded Hermitian operators do not converge unless properly
regularized. In practical applications, one has to make a choice of the regularization method.
In section 4.2 we discuss two alternative approaches and show how they are applied to the
analysis of long spectral intervals of Sinai billiards in two and in three dimensions.

4.1. The metropolis algorithm for RMT

The metropolis algorithm (MA) generates afinite ensemble of spectral sequences which
are statistically independent, and which are distributed according to a prescribed probability
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distribution. This finite ensemble is used to perform averages which are guaranteed to
converge to the exact ensemble averages, when the number of members in the ensemble
increases.

The MA for the circular ensembles is defined by theN -point spectral probability
distribution

p(θ) = N
∏

16k<l6N
|eiθk − eiθl |β (63)

where θ = {θ1, . . . , θN }, 0 6 θl 6 2π , andN is a normalization constant. The MA
proceeds as follows. Starting from an initial vectorθn, a new vectorθn+1 = θn +∆θn is
determined with the components of∆θn randomly chosen from [−1θMax : 1θMax].

Denote

r = p(θn+1)/p(θn). (64)

A step is accepted ifr > 1 or η < r whereη ∈ [0, 1] is a new random number at each
step. As the algorithm depends only on the ratior, the normalization constant is irrelevant.
The choice of1θMax is crucial for near optimal performance of the algorithm and we
use1θMax = 0.02 for N = 40 and1θMax = 0.007 for N = 80. For these parameters,
approximately 50% of the metropolis steps are accepted. The initial vectorθ0 is chosen at
random and the transients due to the initial choice are erased after a few iterations since
the ‘random walker’θn advances quickly towards the most probable domain. Out of all
the vectorsθn only a small fraction is accepted to the ensemble in order to obtain an
uncorrelated sample. Each run generates a set of 2000 properly distributed vectors which
are then used for further analysis. We checked the convergence with respect to the ensemble
size, and found that a set of 2000 spectra is sufficiently large to obtain reliable results.

The same algorithm can be used to sample the probability measure of the Gaussian
ensembles

p(x) = Ne−
β

2

∑N
i=1 x

2
i

∏
16i<j6N

|xi − xj |β. (65)

One has to exercise some care to avoid the choice of initial conditions which have
vanishingly small probability due to the exponential term in (65).

As the first application, we studied the difference between the autocorrelation functions
for the circular ensembles(β = 1, 2, 4) and their corresponding Gaussian ensembles for
a finite dimensionN = 40. We used definitions (1) and (2) for the autocorrelation
functions. For the circular ensemble, the domain of integration is [0, 2π ] and for the
Gaussian ensembles we limited the integration domain to the interval|E| 6 √N to avoid
deformations whose origin is the non-uniform semicircular level density. Figure 1 shows
small yet systematic differences between the Gaussian and circular ensembles which are
most pronounced for the symplectic and the orthogonal ensembles. The differences between
the unitary ensembles is the smallest. The overall agreement is rather good, as expected
when the limitN →∞ is approached.

The same trend persists also when one compares theN = 40 cases for the Gaussian
ensembles with the expressions derived in section 2 forN →∞. This is shown in figure 2.
We see again that theN = 40 data is fairly close to the infinite limit for the GUE case. In
the GOE case theN = 40 data is significantly different from theN →∞ limit.

We used two independent ways of treating a given large spectrum. In the first method
the large spectrum withNtotal eigenvalues is ‘chopped’ to a number of smaller subintervals.
Given a large spectrum, one can chop it in various ways, and one has to find a compromise
which provides a sufficiently large ensemble of not too short intervals. We worked with
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Figure 1. C(ω) for Gaussian (full curve) and circular (broken curve) ensemble. Results are
shown for the orthogonal (most strongly damped) the unitary (middle) and symplectic ensemble
(least damped).

Figure 2. Comparison ofN → ∞ results (full curve) with theN = 40 (metropolis) data for
the GOE and GUE.

≈ Ntotal/40 subintervals ofN = 40 eigenvalues. Each subinterval is unfolded to a mean
spacing of 1 and is shifted to be centred aroundE = 0. This procedure puts the subintervals
on an equal footing. For the calculation of the correlation function, the integration is
limited to |E| < √N . The ensemble averaged autocorrelationC̄(ω) is normalized by
C̄(ω = 0). The calculation of the autocorrelation function is similar to the way by which
we used the MA samples which were constructed according to the Gaussian measures.
An alternative definition would have been to consider the autocorrelation function of the
spectral determinant built from the entire large spectrum. Definition (1) will be harder
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to apply because both the numerator and the denominator diverge with eitherN = Ntotal

or E. This difficulty is related to the well known problem of regularization of spectral
determinants, the regularization scheme we have chosen is as follows. We shift the origin
of the energy axis to the centre of gravity of the large spectrum, and consider the secular
function

ZR(E) =
N−1∏
i=−N

(
1− E

Ei

)
. (66)

This function is defined also in the limit ofN →∞ as long as the symmetric construction
is maintained in the limiting procedure. However, for finiteN the functionZR(E) diverges
asE2N+1 for sufficiently largeE. This can be cured by a regularization factor whose origin
can be illustrated by considering the spectral determinant for an equidistant spectrum:

pR(E) =
N−1∏
i=−N

(
1− E

i + 1
2

)
= 0(N + 1

2 − E)0(−N + 1
2)

0(−N + 1
2 − E)0(N + 1

2)
. (67)

Using the asymptotic expressions for the0 function one obtains

pR(E) ≈ cos(πE)e
E2

N . (68)

which is valid for|E| < Emax(N) where
√
N < Emax(N)� N . This suggests the definition

of a regularized corrected spectral determinant

ZR̃(E) = e−
E2

N

N∏
i=1

(
1− E

Ei

)
. (69)

Where theEi are the unfolded, symmetrically centred spectrum.
The autocorrelation function can now be calculated using

C̄R̃(ω) =
∫ Ñ

−Ñ
ZR̃

(
E − ω

2

)
ZR̃

(
E + ω

2

)
dE. (70)

Note that all eigenvalues are used in one run. HereÑ is proportional toN , but smaller
thanN/2 as even the regularized spectral determinant is much larger than 1 at the edges of
the spectrum. We arbitrarily used̃N = N/6 which yields good results.

As long asN is finite the correlation function based on the regularized polynomial can
be expressed as

CR(ω) = 〈C̄R(ω)〉 =
〈
C̄(ω)

C̄(0)

〉
. (71)

Thus, the difference between the two definitions of the correlation function comes from the
different order of the operations of averaging and normalizing. In figure 3, we compare
the correlation functions obtained by the two averaging methods. The broken and full
curves are MA runs forN = 40 with GOE statistics, using the original (2) and regularized
(71) definitions, respectively. The regularized correlation function is less damped, and it
resembles the non-regularized function for GUE. (The RMT expression for the correlation
function (71) for the GUE was considered in [14].)

We have emphasized several times in the discussion above that the expectation value of
the autocorrelation function depends on all then-point spectral statistics, and therefore does
not, in principle, contain any new information. However, since a typical spectral analysis is
usually carried out in terms of only a few statistical measures, it is worth while to check to
what extent the information in the autocorrelation function overlaps with the most common
statistics—the nearest-neighbour distributionP(s).
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Figure 3. Full curve: autocorrelation functionC(ω) for GOE using metropolis data forN = 40;
broken curve: same as the previous but regularizedCR(ω); dotted curve: regularized and
correctedCR̃(ω) for the two-dimensional Sinai billiard.

Figure 4. Comparison of theN →∞ results (full curve) and the results for spectra which only
have the correct nearest-neighbour level spacing distribution but higher-order correlations are
neglected (broken curve;N = 40). All results are for COE.

For this purpose we used the rejection method to generate a random ensemble of spectral
sequences, with nearest-neighbour spacings which are distributed asPCOE(s), disregarding
all other correlations which are implied by the exact COE measure (65). In figure 4 we
compare the expectation value of the autocorrelation function for this ensemble with the
proper COE result. The difference between the two functions shows already at the positions
of the first zero crossings, and the depths of the first minima. These differences are rather
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Figure 5. Autocorrelation function for the two-dimensional Sinai billiard. The spectrum is
chopped into pieces withN = 40.

large, and establish the sensitivity of the autocorrelation function to correlations between
levels which are further apart than the nearest-neighbours.

4.2. Application to spectra of physical systems

At this point we turn to the analysis of physical spectra, to check the extent of applicability
of the semiclassical and the RMT results.

We used the spectra of Sinai billiards in two [19] and in three dimensions [20], for
which we have the lowest 2591 and 6698 eigenvalues, respectively. We analysed the
(unfolded) spectra using the two methods mentioned previously. In the first, the spectra
were chopped into subintervals of lengthN = 40, and were centred aroundE ≈ 0. We thus
obtained numerical ensembles consisting of 64 and 167 intervals respectively. The average
autocorrelation functions are compared with the corresponding metropolis data in figures 5
and 6. As the number of eigenvalues is quite small for the two-dimensional Sinai billiard,
only the first minimum is reproduced correctly. However, the situation is improved when
the larger spectrum for the three-dimensional billiard is analysed.

To use the entire spectral data in one run, we defined the correlation function as in (70)
and applied it to the spectrum of the two-dimensional Sinai billiard, using all eigenvalues
in one run. The result is given in figure 3 (dotted curve). The numerical values agree better
with the MA runs for the regularized version. Both show nearly the same damping although
the zeros are slightly shifted.

The conclusion we may draw from the comparison of the two methods, is that the
regularized version has a built-in self-averaging mechanism. The energy integral represents
an averaging over independent parts of the spectrum. At a certain valueE only Ei which
are close toE significantly contribute to the product (69).
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Figure 6. Same as in figure 5 but for three dimensions.

5. Conclusion

In this work we tried to emphasize the theoretical and practical advantages of the use of the
autocorrelation function of spectral determinants, both as a practical statistical tool and as an
alternative route to study the relationship between quantum chaos and RMT. To conclude,
we would like to make a few further comments.

One of the most gratifying aspects of the present work was the fact that the correlations
of the Riemannζ on the critical line have much in common with the present work, and could
be studied using rigorous mathematical tools [12]. This provides much more confidence in
the ad hocassumptions which were made in the development of the semiclassical theory.

Our work on the RMT expressions for the autocorrelation functions complements the
previous results on the circular ensembles [8], and the known results for GUE [14]. It also
provides the expressions for the GOE case, and for the ensembles which interpolate between
GOE and GUE.

The semiclassical derivation of the autocorrelation function is new, and enables a close
scrutiny of relevance of the classicalζ function to spectral statistics in the semiclassical
limit. It is clear that both functions are derived from the same building blocks—as a matter
of fact, their Fourier coefficients coincide up to the topological time which corresponds to
half the Heisenberg time. This is in agreement with the recent observations of [7]. The
semiclassical methods which were developed here can also be used for quantum chaotic
problems for which the spectral statistics differ from the one expected for the standard Dyson
ensembles. Such problems are commonly met in applications to mesoscopic systems.
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Appendix. Grassmannian functional integration

Although the Grassmannian functional integrals (19) can be performed exactly, let us treat
this expression as we usually do when one encounters an interacting theory: apply a
Hubbard–Stratonovitch [17] transformation. If the resulting decoupled theory cannot be
solved exactly, do a saddle-point approximation. Expansion around the saddle point then
leads to a nonlinear sigma model theory which can possibly be integrated out. The advantage
over the exact result turns out to be that the limitN →∞ can be done more easily and is
exact. We may first write equation (19) more compactly (compare with [15, 14]):

C̄N(E, ω) =
∫

dψ exp

(
1

2
i
∑
i

ψ̄i(E + ω
2
3)ψi

)
exp

(
− 1

16c
Tr

( N∑
i=1

ψi ⊗ ψ̄i
)2)

× exp

(
− α2

16c
Tr

( N∑
i=1

ψi ⊗ ψ̄iτ3

)2)
(72)

where

3 =
(

2x2 0
0 −2x2

)
(73)

ensures that theξ ’s obtain a ‘+ω’ and theη’s obtain a ‘−ω’.

τ3 =
(

1 0
0 −1

)
(74)

has to be introduced due to the asymmetric part of the random matricesHa. For compactness
the vectors of anticommuting variables were introduced:

ψi =


ξi
ξ ∗i
ηi
η∗i

 ψ̄i = (ξ ∗i ,−ξi, η∗i ,−ηi). (75)

Now, one can decouple the interaction term by performing a Hubbard–Stratonovitch
transformation [17], which introduces a functional integral over a matrixQ which has the
same symmetries as the dyadic productψi ⊗ ψ̄i .

C̄N(E, ω) =
∫

dψ dQ exp

(
i

2

N∑
i=1

ψ̄i

(
E + ω

2
3

)
ψi

)

× exp

(
− 4cTrQ2+ Tr

[
(a1Q+ a2τ3Qτ3)

N∑
i=1

ψi ⊗ ψ̄i
])

(76)

wherea1,2 = 1
2

(√
1+ α2− (−)1,2√1− α2

)
.

Next, the integral over the vectorψ can be performed, yielding∫
dQ exp(−4cTrQ2) det

(
a1Q+ a2τ3Qτ3+ i

2

(
E + ω

2
3
))N/2

(77)

where we now putc = π2/4N , explicitly.
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TransformingQ→ 2π/NQ, one obtains:

C̄N(E, ω) =
∫

dQ exp

[
−N

4
TrQ2+ N

2
Tr ln

(
N

2π
(a1Q+ a2τ3Qτ3)+ 1

2
i
(
E + ω

2
3
))]

.

(78)

Variation with respect to Q yields TrδQQ = Tr(a1Q+ a2τ3Qτ3)
−1(a1δQ+ a2τ3δQτ3). To

lowest order in the parameterα this saddle-point condition becomesQ2 = 1. Expanding to
lowest order inα and transformingQ→ Q+ π/N i(E + ω

23) one obtains:

C̄N(E, ω) =
∫

dQ exp(−N/4TrQ2) detQN/2 exp
(π

2
iTr[(E + ω

2
3)Q]

)
× exp

(
N

2
α2Tr[Qτ3Qτ3]

)
(79)

together with the symmetry restrictions of Q,Q = Q̄ where Q̄ = CQTCT with

C =
(−iτ2 0

0 iτ2

)
, with τ2 =

(
0 −i
i 0

)
andQ = Q+ one obtains:

Q =
(
q A

A+ −q
)
. (80)

with A =
(
a b

b∗ −a∗
)

where|a|2+ |b|2+ q2 = 1. In the saddle-point approximation̄C is

independent ofE, since TrQ = 0 for the above saddle-point manifold. Hence, the exponent
in equation (79) is independent ofE. ForN →∞ this saddle-point approximation becomes
exact.

A matrix Q with the above symmetries can be represented as,

Q = U−1Q0
cU (81)

with

U = VCUD (82)

where

UD = V −1
D T 0

DVD (83)

where

Q0
c =

(
cosθC i sinθCτ2

i sinθCτ2 − cosθC

)
(84)

and

T 0
D =

(
cosθD/2 i sinθD/2
i sinθD/2 cosθD/2

)
(85)

and

VC,D =
(

exp(iφC,Dτ3) 0
0

)
. (86)

andτi, i = 1, 2, 3 are the Pauli matrices. Such a representation was first given by Altlandet
al [15] to study the crossover between GOE and GUE within the supersymmetric nonlinear
sigma model. Here, of course we need only the compact block of the representation given
there.
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In order to perform the functional integral in this representation, we have to find the
corresponding integration measure. To this end we find

Tr dQ2 = (dθC dθD dφC dφD)A(dθC dθD dφC dφD)
T

for this representation, and making use of dQ = (detA)1/2 dθC dθD dφC dφD, we obtain
finally:

dQ = 16 cosθ2
C | sinθC || sinθD| dθC dθD dφC dφD. (87)

As a result, we find for largeN the normalized correlation function:

CN(E,ω) = CN(ω) =
∫ 1

0
dλ λ

sin(πωλ)

ω
exp(t2(λ2− 1))/C0(t

2) (88)

where the normalization constant is given by

C0(t
2) = 2

π

∫ 1

0
dλ λ2 exp(t2(λ2− 1)) (89)

and t2 = 4Nα2.
Integral (88) can be expressed in terms of the error function with complex argument:

CN(ω) =
π3/2 1

t
exp

(
π2ω2

4t2

)
= [erfc

(
πω
2t + it

)]− 2et
2 sin(πω)

ω

π3/2 1
t
=[erfc(it)] − 2et2π

(90)

where erfc(z) is the complementary error function.
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